Blog

The study of

The study of (olive/oleic bio-alkyd resin, OOBAR) as a new biosorbent was prepared in open esterification system from an olive tree, glycerol, oleic acid and phthalic anhydride. The characterization of OOBAR was performed by using ultraviolet/visible, infrared spectra, Boehm titration, zero-point charge, iodine number, methylene blue index, density and bulk DC electrical conductivity. The data obtained show that the OOBAR surface was contained 2.6 and 1.3 mmol/g of acidic and basic sites. The pHZCP was 3.6, ?pH at pH 9.27 was -4.33, the I2 number was 2.3 mmol/g (291.9 mg/g), methylene blue was 0.69 mmol/g (220.7 mg/g), density was 0.6 g/mL and DC conductivity was 1.0 ×10-9 ?-1 cm-1. The effects of acidity, reducing agent, NH4SCN concentration, shaking time, Mo concentration, temperature, OOBAR dose, batch factor and ionic strength for the determination of Mo(V) were evaluated. The maximum OOBAR capacity for sorption of Mo(V) was 1.3 mmol/g. The molar ratio of Mo(SCN)6-, OOBAR+ was 1:1 in acidic medium. The equilibrium isotherms, kinetics and thermodynamic models for sorption of Mo(V) onto OOBAR were studied. Thermodynamic parameters such as standard enthalpy (?H), standard entropy (?S) and standard free energy (?G) was -46.2 kJ/mol, -0.082 kJ/Kmol and -21.8 kJ/mol that indicated the sorption process was spontaneous, exothermic nature with decrease disorder and randomness at the solid-liquid interface of Mo with OOBAR. Dynamic technique experiments using glass column was indicated a good affinity chromatographic separation for its applications in many pharmaceutical and biological areas including liver mice tissue and pharmaceutical vitamin drugs. The value of lower relative standard deviation (RSD%) for pharmaceutical applications samples (n=5) was found from 1.1%